Who Am I?


 ·Î±×ÀÎ

ÄÍÄÄìÑ À̶ó¸é Ç®ÀÌ °¡´É ÇÒµí?
³²±Ãµù  2006-08-14 22:56:54, Á¶È¸ : 340, Ãßõ : 51

[A] Suppose that a given positive number N is partitioned into two positive numbers a and b such that a+b = N. The product ab= a(N-a) has a maximum if a=b=N/2. To see this, let P = Na - a2. By dP/da = N - 2a = 0, we obtain a = N/2 and b = N - N/2 = N/2.

Let's look at this problem in another way. We first define the two numbers A and G such that A = (a+b)/2 and G=, and then prove that G achieves its maximum when a and b are equal. If a and b are different, A - G = (a+b)/2 - = ( - )2 / 2 > 0; if they are equal, A = G. Therefore, the maximum value G can take is A and the value is achieved when a=b.

In the case of n positive numbers a1, a2, ..., an with n being no smaller than 2 such that the sum of the numbers is equal to N, we define A=(a1+a2 + ... + an) / n and G = with respect to a1, a2, ..., an. The proof can be done by changing the numbers in such a way that A remains constant but G gets larger until all the numbers are equal, at which point A and G are equal.

Suppose that in the set { a1, a2, ..., an }, a1 is bigger than any other number in the set and a2 is smaller than any other number in the set so that we have a1 > A > a2. Now replace a1 by A and a2 by a2' where a2' = a1+a2-A which is > 0. The new set of numbers becomes {A, a2', a3, ..., an}. Notice that because A+a2' = a1+a2, the sum of the numbers in the new set is equal to that in the old set. Also, the value of A with respect to the numbers in the new set, (A+ a2' + ... + an) / n, is equal to the value of A with respect to the numbers in the old set. By some algebraic manipulation, we have that Aa2' - a1a2 = A(a1+a2-A) - a1a2 = (A-a2)(a1-A) > 0. So the product of the numbers in the new set is greater than that in the old set. This means that by the construction of the new set the value of G has increased.

Based on the above arguments, we can generate sets in sequence such that the numbers in the set generated at each stage will eventually all equal A, and A and G computed with respect to the numbers in the set will become equal. From this we can show that the product of the elements in a partition of N achieves its maximum when the elements are all equal.


¹Ù¸¥»ýȰ NZEO
±ÛÀº ÀÎÅͳݿ¡¼­ ÀÚ½ÅÀ» ³ªÅ¸³»´Â À¯ÀÏÇÑ ¸ð½ÀÀÔ´Ï´Ù.
»ó´ë¿¡°Ô »óó¸¦ Áֱ⺸´Ù °°ÀÌ Áñ°Å¿ö ÇÒ ¼ö ÀÖ´Â ÄÚ¸àÆ® ºÎʵå·Á¿ä.
2025-07-06
02:38:19


Name
Password
Comment
¡å

  ¼öÁ¤ÇÏ±â   ÃßõÇÏ±â   ¸ñ·Ïº¸±â

¹øÈ£ Á¦¸ñ ÀÛ¼ºÀÚ ÀÛ¼ºÀÏ   Ãßõ Á¶È¸
5672  Å¸¶ó¶ù    ÀÌÀÚÈÆ 2017/04/08 13 166
5671  Å°Å°Å±È­ÀÌÆÃ!!!    ¼­°æÀº 2010/05/17 110 463
5670  Å°Å°Å°Å°  [5]  ¹èÀú½Ã 2004/08/22 73 514
5669  Å°Å°Å°Å°    °æ¼¼¾ä 2009/05/28 78 461
5668  Å°Å° ±³·É´Ô¹Ì¾È    ¼­Çϳª 2010/04/27 90 483
5667  Å°½ºÇÏ°í ½ÍÀº ÀÔ¼ú~  [3]  ¼ºÇü¿Ü°úÀü¹®ÀÇ 2002/04/29 95 540
5666  Åª; ¾Æ·¡ Áú¹®À» º¸°í³ª´Ï ¤»¤»    Áú¹®ÀÚ2 ¤»¤» 2003/04/27 81 466
5665  Å©Å©  [1]  ¶Ç¶óÀÌ 2005/04/29 52 354
5664  Å©¸£··    ÀÌÀÚÈÆ 2017/04/15 24 152
5663  ÄûÁî    À̼ö°æ 2018/04/02 31 236
5662  ÄôǪÆÒ´õ Àç¹Õ¾î    Å¯Å¯ 2008/06/27 47 351
5661  ÄôǪ È­À̸µ    ¸Þ·Õ 2008/06/27 40 358
5660  Äí¿¡¿¢....½ºÃÅ  [1]  ºó 2003/04/18 63 312
5659  ÄìÄìÄì    Á¶¹ÎÁ¤ 2005/05/24 84 365
 ÄÍÄÄìÑ À̶ó¸é Ç®ÀÌ °¡´É ÇÒµí?    ³²±Ãµù 2006/08/14 51 340
5657  ÄÍ  [4]  ¹æÁö¼÷ 2011/04/19 57 474
5656  ÄÉÄÉÄÉÄÉÄÉÄÉÄÉ켘    ¾çÈñâ 2012/05/19 87 380
5655  ÄɹÌÄÄÀÎÀÌ µÈÈÄ    ·Õ´Ù¸®~ 2005/06/03 51 355
5654  ÄɹÌÄÄÀ» À§ÇÏ¿©~    ¾çÈñâ 2012/05/26 84 390
5653  ÄɹÌÄÄÀº...    ¤»¤» 2004/05/23 78 526
5652  ÄɹÌÄÄÀº..    ¸¶Å©Á¶¾Æ 2002/04/18 110 656
5651  ÄɹÌÄÄÀº..    ¸Þ·Õ 2004/05/26 35 345
5650  ÄɹÌÄÄ¿¡¼­~~¤¾¤¾¤¾    Çغ¸¼Å¿ä~ 2003/05/21 68 445
5649  ÄɹÌÄÄ¿¡¼­...    ±Ã±ÝÇϽôÙ;;; 2004/04/26 50 358
5648  ÄɹÌÄÄ¿¡¼­..    ±Ã±Ý 2002/04/18 107 563
5647  ÄɹÌÄÄ¿¡¼­  [1]  ±Í¿°µÕÀÌ 2005/04/24 42 331
5646  ÄɹÌÄÄ¿¡°Ô ¹Ù¶ó´ÂÁ¡    zzzz 2006/07/01 81 421
5645  ÄɹÌÄĸ¶ÄÏ    ±èÀ¯°æ 2017/04/18 27 216
5644  ÄɹÌÄĵé¾î¿Í¼­..    ¿ÖÄÉ ±Ã±ÝÇÏÁö.. 2002/04/18 93 476
5643  ÄɹÌÄij»¿¡¼­    ³ª´Ù 2005/04/15 54 325
5642  ÄɹÌÄIJɹ̳²  [1]  ³­ÄɹÌÄIJɹ̳² 2007/05/03 40 388
5641  ÄɹÌÄÄ18±âÁß¿¡..  [3]  ¤»¤»¤» 2005/04/15 50 441
5640  ÄɹÌÄÄ Áß¿¡ °¡Àå´à°í½ÍÀº»ç¶÷Àº??¤»¤»¤»¤»  [3]  µ¿°ÇÀÌ¿¡°Ô..¤»¤»¤» 2005/04/18 51 421
5639  ÄɹÌÄÄ °£ÆÇ Çö¿í    ¹é¹ÎÁö 2017/06/03 27 283
5638  ÄɹÌÄÄ  [4]  ·¯ºí¸®Å¸ÀÓ 2010/04/14 44 393
5637  ÄɹÌ~ÄÄÄÄÄÄ!!    È¸Å½ºÎȰ 2009/06/26 57 375
5636  Äɸð´×    ¿©ÀÎÇý 2015/04/06 16 241
5635  Ä¿ÇÃÁ¤ÇÏ±â    Å丶Åä 2005/04/23 58 343
5634  Ä¿ÇÃÀÌ µÇ±â¿¡ ¾Õ¼­..  [4]  Ä¿ÇøŴÏÀú 2007/04/24 28 366
5633  Ä¿ÇøÅĪ °¡Áî¾Æ~~    ¹é¹ÎÁö 2018/05/05 30 188
5632  Ä¿ÇøŴÏÀú  [1]  ÀÌÁ¤±Ù 2011/04/07 77 494
5631  Ä¼È£È£    ÇÇÄÝ·Î 2008/06/06 45 319
5630  Ä¼Ä¼Ä¼  [5]  ±â¿µÇÜ 2007/05/04 32 336
5629  Ä¼Ä¼  [1]  ±èÈ¿¿µ 2013/05/09 69 338
5628  Ä³½ºÆÃÀ» ÇÏÀÚ~~~  [2]  Ã¤¿ø¾Æ 2008/04/13 38 428
5627  Ä³½ºÆÃ À볪´øµ¥ ¶Ç ÇØÁÒ!~~¤»¤»  [1]  ºÎ¾ûÀÌ@.@ 2002/05/06 70 468
5626  Ä³½ºÆÃ ½Åµå·Ò    ..... 2002/08/27 43 452
5625  Ä®´äÁ»¿©    ÀÌ¼Ö 2015/04/04 29 227
5624  Ãæ°ÝÁú¹®.....  [1]  ¸Þ··~~ 2002/04/29 54 461
5623  Ã⿬ÀÚ ¼·¿Ü ÇÕ´Ï´Ù!    PD 2002/04/24 83 549

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö [1][2][3][4][5][6][7][8][9][10][11] 12 [13][14][15]..[125]   [´ÙÀ½ 15°³]
       

Copyright 1999-2025 Zeroboard / skin by zero