Who Am I?


6222.   12125
ÄÍÄÄìÑ À̶ó¸é Ç®ÀÌ °¡´É ÇÒµí?
Ãßõ : 44 À̸§ : ****** ÀÛ¼ºÀÏ : 2006-08-14 22:56:54 Á¶È¸¼ö : 287
[A] Suppose that a given positive number N is partitioned into two positive numbers a and b such that a+b = N. The product ab= a(N-a) has a maximum if a=b=N/2. To see this, let P = Na - a2. By dP/da = N - 2a = 0, we obtain a = N/2 and b = N - N/2 = N/2.

Let's look at this problem in another way. We first define the two numbers A and G such that A = (a+b)/2 and G=, and then prove that G achieves its maximum when a and b are equal. If a and b are different, A - G = (a+b)/2 - = ( - )2 / 2 > 0; if they are equal, A = G. Therefore, the maximum value G can take is A and the value is achieved when a=b.

In the case of n positive numbers a1, a2, ..., an with n being no smaller than 2 such that the sum of the numbers is equal to N, we define A=(a1+a2 + ... + an) / n and G = with respect to a1, a2, ..., an. The proof can be done by changing the numbers in such a way that A remains constant but G gets larger until all the numbers are equal, at which point A and G are equal.

Suppose that in the set { a1, a2, ..., an }, a1 is bigger than any other number in the set and a2 is smaller than any other number in the set so that we have a1 > A > a2. Now replace a1 by A and a2 by a2' where a2' = a1+a2-A which is > 0. The new set of numbers becomes {A, a2', a3, ..., an}. Notice that because A+a2' = a1+a2, the sum of the numbers in the new set is equal to that in the old set. Also, the value of A with respect to the numbers in the new set, (A+ a2' + ... + an) / n, is equal to the value of A with respect to the numbers in the old set. By some algebraic manipulation, we have that Aa2' - a1a2 = A(a1+a2-A) - a1a2 = (A-a2)(a1-A) > 0. So the product of the numbers in the new set is greater than that in the old set. This means that by the construction of the new set the value of G has increased.

Based on the above arguments, we can generate sets in sequence such that the numbers in the set generated at each stage will eventually all equal A, and A and G computed with respect to the numbers in the set will become equal. From this we can show that the product of the elements in a partition of N achieves its maximum when the elements are all equal.
Name Pass  
¹øÈ£ Á¦¸ñ ³¯Â¥ Á¶È¸
5672  Å¸¶ó¶ù   2017/04/08 80
5671  Å°Å°Å±È­ÀÌÆÃ!!!   2010/05/17 423
5670  Å°Å°Å°Å°  [5] 2004/08/22 443
5669  Å°Å°Å°Å°   2009/05/28 408
5668  Å°Å° ±³·É´Ô¹Ì¾È   2010/04/27 429
5667  Å°½ºÇÏ°í ½ÍÀº ÀÔ¼ú~  [3] 2002/04/29 430
5666  Åª; ¾Æ·¡ Áú¹®À» º¸°í³ª´Ï ¤»¤»   2003/04/27 392
5665  Å©Å©  [1] 2005/04/29 310
5664  Å©¸£··   2017/04/15 69
5663  ÄûÁî   2018/04/02 82
5662  ÄôǪÆÒ´õ Àç¹Õ¾î   2008/06/27 324
5661  ÄôǪ È­À̸µ   2008/06/27 323
5660  Äí¿¡¿¢....½ºÃÅ  [1] 2003/04/18 275
5659  ÄìÄìÄì   2005/05/24 328
 ÄÍÄÄìÑ À̶ó¸é Ç®ÀÌ °¡´É ÇÒµí?   2006/08/14 287
5657  ÄÍ  [4] 2011/04/19 432
5656  ÄÉÄÉÄÉÄÉÄÉÄÉÄÉ켘   2012/05/19 357
5655  ÄɹÌÄÄÀÎÀÌ µÈÈÄ   2005/06/03 319
5654  ÄɹÌÄÄÀ» À§ÇÏ¿©~   2012/05/26 360
5653  ÄɹÌÄÄÀº...   2004/05/23 444
5652  ÄɹÌÄÄÀº..   2002/04/18 555
5651  ÄɹÌÄÄÀº..   2004/05/26 304
5650  ÄɹÌÄÄ¿¡¼­~~¤¾¤¾¤¾   2003/05/21 384
5649  ÄɹÌÄÄ¿¡¼­...   2004/04/26 315
5648  ÄɹÌÄÄ¿¡¼­..   2002/04/18 457
5647  ÄɹÌÄÄ¿¡¼­  [1] 2005/04/24 294
5646  ÄɹÌÄÄ¿¡°Ô ¹Ù¶ó´ÂÁ¡   2006/07/01 386
5645  ÄɹÌÄĸ¶ÄÏ   2017/04/18 123
5644  ÄɹÌÄĵé¾î¿Í¼­..   2002/04/18 385
5643  ÄɹÌÄij»¿¡¼­   2005/04/15 289
5642  ÄɹÌÄIJɹ̳²  [1] 2007/05/03 358
5641  ÄɹÌÄÄ18±âÁß¿¡..  [3] 2005/04/15 390
5640  ÄɹÌÄÄ Áß¿¡ °¡Àå´à°í½ÍÀº»ç¶÷Àº??¤»¤»¤»¤»  [3] 2005/04/18 372
5639  ÄɹÌÄÄ °£ÆÇ Çö¿í   2017/06/03 81
5638  ÄɹÌÄÄ  [4] 2010/04/14 367
5637  ÄɹÌ~ÄÄÄÄÄÄ!!   2009/06/26 349
5636  Äɸð´×   2015/04/06 141
5635  Ä¿ÇÃÁ¤ÇÏ±â   2005/04/23 309
5634  Ä¿ÇÃÀÌ µÇ±â¿¡ ¾Õ¼­..  [4] 2007/04/24 318
5633  Ä¿ÇøÅĪ °¡Áî¾Æ~~   2018/05/05 92
5632  Ä¿ÇøŴÏÀú  [1] 2011/04/07 435
5631  Ä¼È£È£   2008/06/06 295
5630  Ä¼Ä¼Ä¼  [5] 2007/05/04 302
5629  Ä¼Ä¼  [1] 2013/05/09 295
5628  Ä³½ºÆÃÀ» ÇÏÀÚ~~~  [2] 2008/04/13 398
5627  Ä³½ºÆÃ À볪´øµ¥ ¶Ç ÇØÁÒ!~~¤»¤»  [1] 2002/05/06 367
5626  Ä³½ºÆÃ ½Åµå·Ò   2002/08/27 389
5625  Ä®´äÁ»¿©   2015/04/04 132
5624  Ãæ°ÝÁú¹®.....  [1] 2002/04/29 369
5623  Ã⿬ÀÚ ¼·¿Ü ÇÕ´Ï´Ù!   2002/04/24 449
[1][2][3][4][5][6][7][8][9][10][11] 12 [13][14][15]..[125]
Copyright 1999-2022 Zeroboard / skin by