Who Am I?


 로그인

켐컴人 이라면 풀이 가능 할듯?
남궁딩  2006-08-14 22:56:54, 조회 : 298, 추천 : 46

[A] Suppose that a given positive number N is partitioned into two positive numbers a and b such that a+b = N. The product ab= a(N-a) has a maximum if a=b=N/2. To see this, let P = Na - a2. By dP/da = N - 2a = 0, we obtain a = N/2 and b = N - N/2 = N/2.

Let's look at this problem in another way. We first define the two numbers A and G such that A = (a+b)/2 and G=, and then prove that G achieves its maximum when a and b are equal. If a and b are different, A - G = (a+b)/2 - = ( - )2 / 2 > 0; if they are equal, A = G. Therefore, the maximum value G can take is A and the value is achieved when a=b.

In the case of n positive numbers a1, a2, ..., an with n being no smaller than 2 such that the sum of the numbers is equal to N, we define A=(a1+a2 + ... + an) / n and G = with respect to a1, a2, ..., an. The proof can be done by changing the numbers in such a way that A remains constant but G gets larger until all the numbers are equal, at which point A and G are equal.

Suppose that in the set { a1, a2, ..., an }, a1 is bigger than any other number in the set and a2 is smaller than any other number in the set so that we have a1 > A > a2. Now replace a1 by A and a2 by a2' where a2' = a1+a2-A which is > 0. The new set of numbers becomes {A, a2', a3, ..., an}. Notice that because A+a2' = a1+a2, the sum of the numbers in the new set is equal to that in the old set. Also, the value of A with respect to the numbers in the new set, (A+ a2' + ... + an) / n, is equal to the value of A with respect to the numbers in the old set. By some algebraic manipulation, we have that Aa2' - a1a2 = A(a1+a2-A) - a1a2 = (A-a2)(a1-A) > 0. So the product of the numbers in the new set is greater than that in the old set. This means that by the construction of the new set the value of G has increased.

Based on the above arguments, we can generate sets in sequence such that the numbers in the set generated at each stage will eventually all equal A, and A and G computed with respect to the numbers in the set will become equal. From this we can show that the product of the elements in a partition of N achieves its maximum when the elements are all equal.


바른생활 NZEO
글은 인터넷에서 자신을 나타내는 유일한 모습입니다.
상대에게 상처를 주기보다 같이 즐거워 할 수 있는 코멘트 부탁드려요.
2024-05-26
23:37:18


Name
Password
Comment

  수정하기   추천하기   목록보기

번호 제목 작성자 작성일   추천 조회
572  케미컴은..    마크조아 2002/04/18 103 595
571  케미컴은..    메롱 2004/05/26 31 313
570  케미컴은...    ㅋㅋ 2004/05/23 68 464
569  케미컴을 위하여~    양희창 2012/05/26 82 365
568  케미컴인이 된후    롱다리~ 2005/06/03 46 325
567  케케케케케케케켘    양희창 2012/05/19 83 361
566    [4]  방지숙 2011/04/19 48 440
 켐컴人 이라면 풀이 가능 할듯?    남궁딩 2006/08/14 46 298
564  쿄쿄쿄    조민정 2005/05/24 77 335
563  쿠에엑....스쳔  [1]   2003/04/18 56 286
562  쿵푸 화이링    메롱 2008/06/27 36 332
561  쿵푸팬더 재밌어    킁킁 2008/06/27 45 332
560  퀴즈    이수경 2018/04/02 14 125
559  크르렁    이자훈 2017/04/15 10 92
558  크크  [1]  또라이 2005/04/29 48 321
557  큭; 아래 질문을 보고나니 ㅋㅋ    질문자2 ㅋㅋ 2003/04/27 76 409
556  키스하고 싶은 입술~  [3]  성형외과전문의 2002/04/29 84 460
555  키키 교령님미안    서하나 2010/04/27 87 442
554  키키키키  [5]  배저시 2004/08/22 66 464
553  키키키키    경세얌 2009/05/28 70 420
552  키키킥화이팅!!!    서경은 2010/05/17 106 437
551  타라랏    이자훈 2017/04/08 11 107
550  타미5     2009/05/07 36 343
549  타미6     2009/05/07 35 369
548  타미7     2009/05/07 43 333
547  타미8    타미타미회타미 2009/05/07 84 400
546  타미타미    서경은 2010/04/29 74 395
545  타미타미    박신예 2010/05/13 61 347
544  타미타미    박신예 2010/05/13 78 385
543  타미타미언능해죠ㅋㅋㅋㅋㅋㅋㅋㅋㅋ    서경은 2010/05/10 81 419
542  타미타미회타미    용용 2010/04/18 106 420
541  탈락자는 떨어지고 2차전을 가지겠습니다  [4]  ㄴㅁ 2005/04/15 36 351
540  탐탐    방지숙 2011/04/07 97 465
539  태극전사님들..........  [2]  김혜초 2006/06/18 29 342
538  태풍이 몰아온다!!!    있지! 2002/07/05 54 321
537  태희야 회탐언제해?  [4]  서하나 2011/09/06 56 477
536  태희야얼렁행ㅋㅋㅋㅋㅋㅋㅋ    서하나 2011/09/06 82 456
535  태희야회탐고고    서하나 2011/09/04 83 412
534  태희야회탐해!!!!!    박신예 2011/09/04 55 319
533  태히야화이팅 ! !    서경은 2011/09/06 72 379
532  토너먼트    회2345 2009/04/17 31 342
531  토너먼트 시작~~  [1]  회탐중독자 2009/04/03 33 317
530  토마토님 수고 많으십니다...    박재현 2005/07/21 44 301
529  퇴물 질문 메이커 ㅠㅠ  [6]  한용현 2010/05/24 45 377
528  특이한 백문백답    김경원 2003/03/31 63 402
527  티용이    회탐부활 2009/06/26 51 366
526  팬더님의 회탐    KUNGFU 2008/06/18 52 368
525  퍼담기 퍼레이드..그 첫번째    최병진 2004/06/06 66 379
524  퍼오는 것도 은근히 귀찮다 ㅋㅋ    천희 2004/08/18 67 384
523  퍼올꺼다    회탐매니아 2008/04/17 47 345

    목록보기   이전페이지   다음페이지   [이전 15개] [1]..[106][107][108][109][110][111][112][113] 114 [115][116][117][118][119][120]..[125]   [다음 15개]
       

Copyright 1999-2024 Zeroboard / skin by zero