Who Am I?


 ·Î±×ÀÎ

ÄÍÄÄìÑ À̶ó¸é Ç®ÀÌ °¡´É ÇÒµí?
³²±Ãµù  2006-08-14 22:56:54, Á¶È¸ : 338, Ãßõ : 51

[A] Suppose that a given positive number N is partitioned into two positive numbers a and b such that a+b = N. The product ab= a(N-a) has a maximum if a=b=N/2. To see this, let P = Na - a2. By dP/da = N - 2a = 0, we obtain a = N/2 and b = N - N/2 = N/2.

Let's look at this problem in another way. We first define the two numbers A and G such that A = (a+b)/2 and G=, and then prove that G achieves its maximum when a and b are equal. If a and b are different, A - G = (a+b)/2 - = ( - )2 / 2 > 0; if they are equal, A = G. Therefore, the maximum value G can take is A and the value is achieved when a=b.

In the case of n positive numbers a1, a2, ..., an with n being no smaller than 2 such that the sum of the numbers is equal to N, we define A=(a1+a2 + ... + an) / n and G = with respect to a1, a2, ..., an. The proof can be done by changing the numbers in such a way that A remains constant but G gets larger until all the numbers are equal, at which point A and G are equal.

Suppose that in the set { a1, a2, ..., an }, a1 is bigger than any other number in the set and a2 is smaller than any other number in the set so that we have a1 > A > a2. Now replace a1 by A and a2 by a2' where a2' = a1+a2-A which is > 0. The new set of numbers becomes {A, a2', a3, ..., an}. Notice that because A+a2' = a1+a2, the sum of the numbers in the new set is equal to that in the old set. Also, the value of A with respect to the numbers in the new set, (A+ a2' + ... + an) / n, is equal to the value of A with respect to the numbers in the old set. By some algebraic manipulation, we have that Aa2' - a1a2 = A(a1+a2-A) - a1a2 = (A-a2)(a1-A) > 0. So the product of the numbers in the new set is greater than that in the old set. This means that by the construction of the new set the value of G has increased.

Based on the above arguments, we can generate sets in sequence such that the numbers in the set generated at each stage will eventually all equal A, and A and G computed with respect to the numbers in the set will become equal. From this we can show that the product of the elements in a partition of N achieves its maximum when the elements are all equal.


¹Ù¸¥»ýȰ NZEO
±ÛÀº ÀÎÅͳݿ¡¼­ ÀÚ½ÅÀ» ³ªÅ¸³»´Â À¯ÀÏÇÑ ¸ð½ÀÀÔ´Ï´Ù.
»ó´ë¿¡°Ô »óó¸¦ Áֱ⺸´Ù °°ÀÌ Áñ°Å¿ö ÇÒ ¼ö ÀÖ´Â ÄÚ¸àÆ® ºÎʵå·Á¿ä.
2025-07-01
11:06:45


Name
Password
Comment
¡å

  ¼öÁ¤ÇÏ±â   ÃßõÇÏ±â   ¸ñ·Ïº¸±â

¹øÈ£ Á¦¸ñ ÀÛ¼ºÀÚ ÀÛ¼ºÀÏ   Ãßõ Á¶È¸
572  ÄɹÌÄÄÀº..    ¸¶Å©Á¶¾Æ 2002/04/18 110 650
571  ÄɹÌÄÄÀº..    ¸Þ·Õ 2004/05/26 35 343
570  ÄɹÌÄÄÀº...    ¤»¤» 2004/05/23 78 519
569  ÄɹÌÄÄÀ» À§ÇÏ¿©~    ¾çÈñâ 2012/05/26 84 389
568  ÄɹÌÄÄÀÎÀÌ µÈÈÄ    ·Õ´Ù¸®~ 2005/06/03 49 350
567  ÄÉÄÉÄÉÄÉÄÉÄÉÄÉ켘    ¾çÈñâ 2012/05/19 86 378
566  ÄÍ  [4]  ¹æÁö¼÷ 2011/04/19 54 471
 ÄÍÄÄìÑ À̶ó¸é Ç®ÀÌ °¡´É ÇÒµí?    ³²±Ãµù 2006/08/14 51 338
564  ÄìÄìÄì    Á¶¹ÎÁ¤ 2005/05/24 82 362
563  Äí¿¡¿¢....½ºÃÅ  [1]  ºó 2003/04/18 62 310
562  ÄôǪ È­À̸µ    ¸Þ·Õ 2008/06/27 40 356
561  ÄôǪÆÒ´õ Àç¹Õ¾î    Å¯Å¯ 2008/06/27 46 348
560  ÄûÁî    À̼ö°æ 2018/04/02 30 226
559  Å©¸£··    ÀÌÀÚÈÆ 2017/04/15 22 144
558  Å©Å©  [1]  ¶Ç¶óÀÌ 2005/04/29 52 352
557  Åª; ¾Æ·¡ Áú¹®À» º¸°í³ª´Ï ¤»¤»    Áú¹®ÀÚ2 ¤»¤» 2003/04/27 80 461
556  Å°½ºÇÏ°í ½ÍÀº ÀÔ¼ú~  [3]  ¼ºÇü¿Ü°úÀü¹®ÀÇ 2002/04/29 94 535
555  Å°Å° ±³·É´Ô¹Ì¾È    ¼­Çϳª 2010/04/27 90 479
554  Å°Å°Å°Å°  [5]  ¹èÀú½Ã 2004/08/22 72 510
553  Å°Å°Å°Å°    °æ¼¼¾ä 2009/05/28 78 455
552  Å°Å°Å±È­ÀÌÆÃ!!!    ¼­°æÀº 2010/05/17 109 460
551  Å¸¶ó¶ù    ÀÌÀÚÈÆ 2017/04/08 13 163
550  Å¸¹Ì5    ¾Ó 2009/05/07 36 365
549  Å¸¹Ì6    ¿õ 2009/05/07 46 397
548  Å¸¹Ì7    À× 2009/05/07 53 360
547  Å¸¹Ì8    Å¸¹ÌŸ¹ÌȸŸ¹Ì 2009/05/07 85 428
546  Å¸¹ÌŸ¹Ì    ¼­°æÀº 2010/04/29 75 433
545  Å¸¹ÌŸ¹Ì    ¹Ú½Å¿¹ 2010/05/13 63 371
544  Å¸¹ÌŸ¹Ì    ¹Ú½Å¿¹ 2010/05/13 78 406
543  Å¸¹ÌŸ¹Ì¾ð´ÉÇØÁÒ¤»¤»¤»¤»¤»¤»¤»¤»¤»    ¼­°æÀº 2010/05/10 82 441
542  Å¸¹ÌŸ¹ÌȸŸ¹Ì    ¿ë¿ë 2010/04/18 110 445
541  Å»¶ôÀÚ´Â ¶³¾îÁö°í 2Â÷ÀüÀ» °¡Áö°Ú½À´Ï´Ù  [4]  ¤¤¤± 2005/04/15 44 382
540  Å½Å½    ¹æÁö¼÷ 2011/04/07 98 498
539  Å±ØÀü»ç´Ôµé..........  [2]  ±èÇýÃÊ 2006/06/18 34 369
538  ÅÂdzÀÌ ¸ô¾Æ¿Â´Ù!!!    ÀÖÁö! 2002/07/05 67 367
537  ÅÂÈñ¾ß ȸ޾ðÁ¦ÇØ?  [4]  ¼­Çϳª 2011/09/06 65 516
536  ÅÂÈñ¾ß¾ó··Çऻ¤»¤»¤»¤»¤»¤»    ¼­Çϳª 2011/09/06 83 491
535  ÅÂÈñ¾ßȸްí°í    ¼­Çϳª 2011/09/04 93 453
534  ÅÂÈñ¾ßÈ¸Å½ÇØ!!!!!    ¹Ú½Å¿¹ 2011/09/04 70 410
533  ÅÂÈ÷¾ßÈ­ÀÌÆÃ ! !    ¼­°æÀº 2011/09/06 75 408
532  Åä³Ê¸ÕÆ®    È¸2345 2009/04/17 35 370
531  Åä³Ê¸ÕÆ® ½ÃÀÛ~~  [1]  È¸Å½Áßµ¶ÀÚ 2009/04/03 40 355
530  Å丶Åä´Ô ¼ö°í ¸¹À¸½Ê´Ï´Ù...    ¹ÚÀçÇö 2005/07/21 45 322
529  Åð¹° Áú¹® ¸ÞÀÌÄ¿ ¤Ð¤Ð  [6]  ÇÑ¿ëÇö 2010/05/24 46 400
528  Æ¯ÀÌÇÑ ¹é¹®¹é´ä    ±è°æ¿ø 2003/03/31 73 477
527  Æ¼¿ëÀÌ    È¸Å½ºÎȰ 2009/06/26 54 388
526  ÆÒ´õ´ÔÀÇ È¸Å½    KUNGFU 2008/06/18 53 386
525  ÆÛ´ã±â ÆÛ·¹À̵å..±× ù¹øÂ°    ÃÖº´Áø 2004/06/06 70 417
524  ÆÛ¿À´Â °Íµµ Àº±ÙÈ÷ ±ÍÂú´Ù ¤»¤»    ÃµÈñ 2004/08/18 70 423
523  ÆÛ¿Ã²¨´Ù    È¸Å½¸Å´Ï¾Æ 2008/04/17 52 374

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö   [ÀÌÀü 15°³] [1]..[106][107][108][109][110][111][112][113] 114 [115][116][117][118][119][120]..[125]   [´ÙÀ½ 15°³]
       

Copyright 1999-2025 Zeroboard / skin by zero