Who Am I?


6222.   114125
켐컴人 이라면 풀이 가능 할듯?
추천 : 44 이름 : ****** 작성일 : 2006-08-14 22:56:54 조회수 : 288
[A] Suppose that a given positive number N is partitioned into two positive numbers a and b such that a+b = N. The product ab= a(N-a) has a maximum if a=b=N/2. To see this, let P = Na - a2. By dP/da = N - 2a = 0, we obtain a = N/2 and b = N - N/2 = N/2.

Let's look at this problem in another way. We first define the two numbers A and G such that A = (a+b)/2 and G=, and then prove that G achieves its maximum when a and b are equal. If a and b are different, A - G = (a+b)/2 - = ( - )2 / 2 > 0; if they are equal, A = G. Therefore, the maximum value G can take is A and the value is achieved when a=b.

In the case of n positive numbers a1, a2, ..., an with n being no smaller than 2 such that the sum of the numbers is equal to N, we define A=(a1+a2 + ... + an) / n and G = with respect to a1, a2, ..., an. The proof can be done by changing the numbers in such a way that A remains constant but G gets larger until all the numbers are equal, at which point A and G are equal.

Suppose that in the set { a1, a2, ..., an }, a1 is bigger than any other number in the set and a2 is smaller than any other number in the set so that we have a1 > A > a2. Now replace a1 by A and a2 by a2' where a2' = a1+a2-A which is > 0. The new set of numbers becomes {A, a2', a3, ..., an}. Notice that because A+a2' = a1+a2, the sum of the numbers in the new set is equal to that in the old set. Also, the value of A with respect to the numbers in the new set, (A+ a2' + ... + an) / n, is equal to the value of A with respect to the numbers in the old set. By some algebraic manipulation, we have that Aa2' - a1a2 = A(a1+a2-A) - a1a2 = (A-a2)(a1-A) > 0. So the product of the numbers in the new set is greater than that in the old set. This means that by the construction of the new set the value of G has increased.

Based on the above arguments, we can generate sets in sequence such that the numbers in the set generated at each stage will eventually all equal A, and A and G computed with respect to the numbers in the set will become equal. From this we can show that the product of the elements in a partition of N achieves its maximum when the elements are all equal.
Name Pass  
번호 제목 날짜 조회
572  케미컴은..   2002/04/18 561
571  케미컴은..   2004/05/26 305
570  케미컴은...   2004/05/23 449
569  케미컴을 위하여~   2012/05/26 361
568  케미컴인이 된후   2005/06/03 320
567  케케케케케케케켘   2012/05/19 357
566    [4] 2011/04/19 434
 켐컴人 이라면 풀이 가능 할듯?   2006/08/14 288
564  쿄쿄쿄   2005/05/24 331
563  쿠에엑....스쳔  [1] 2003/04/18 278
562  쿵푸 화이링   2008/06/27 325
561  쿵푸팬더 재밌어   2008/06/27 326
560  퀴즈   2018/04/02 91
559  크르렁   2017/04/15 74
558  크크  [1] 2005/04/29 313
557  큭; 아래 질문을 보고나니 ㅋㅋ   2003/04/27 395
556  키스하고 싶은 입술~  [3] 2002/04/29 435
555  키키 교령님미안   2010/04/27 431
554  키키키키  [5] 2004/08/22 445
553  키키키키   2009/05/28 412
552  키키킥화이팅!!!   2010/05/17 424
551  타라랏   2017/04/08 87
550  타미5   2009/05/07 335
549  타미6   2009/05/07 362
548  타미7   2009/05/07 325
547  타미8   2009/05/07 392
546  타미타미   2010/04/29 385
545  타미타미   2010/05/13 340
544  타미타미   2010/05/13 376
543  타미타미언능해죠ㅋㅋㅋㅋㅋㅋㅋㅋㅋ   2010/05/10 410
542  타미타미회타미   2010/04/18 411
541  탈락자는 떨어지고 2차전을 가지겠습니다  [4] 2005/04/15 340
540  탐탐   2011/04/07 452
539  태극전사님들..........  [2] 2006/06/18 331
538  태풍이 몰아온다!!!   2002/07/05 305
537  태희야 회탐언제해?  [4] 2011/09/06 468
536  태희야얼렁행ㅋㅋㅋㅋㅋㅋㅋ   2011/09/06 442
535  태희야회탐고고   2011/09/04 404
534  태희야회탐해!!!!!   2011/09/04 312
533  태히야화이팅 ! !   2011/09/06 370
532  토너먼트   2009/04/17 334
531  토너먼트 시작~~  [1] 2009/04/03 310
530  토마토님 수고 많으십니다...   2005/07/21 292
529  퇴물 질문 메이커 ㅠㅠ  [6] 2010/05/24 370
528  특이한 백문백답   2003/03/31 384
527  티용이   2009/06/26 358
526  팬더님의 회탐   2008/06/18 360
525  퍼담기 퍼레이드..그 첫번째   2004/06/06 370
524  퍼오는 것도 은근히 귀찮다 ㅋㅋ   2004/08/18 374
523  퍼올꺼다   2008/04/17 338
[1]..[106][107][108][109][110][111][112][113] 114 [115][116][117][118][119][120]..[125]
Copyright 1999-2022 Zeroboard / skin by