Who Am I?


 ·Î±×ÀÎ

³Î ¹Ï°Ú´Ù.
¾Æ³ö  2007-05-15 08:59:32, Á¶È¸ : 309, Ãßõ : 24

[A] Suppose that a given positive number N is partitioned into two positive numbers a and b such that a+b = N. The product ab= a(N-a) has a maximum if a=b=N/2. To see this, let P = Na - a2. By dP/da = N - 2a = 0, we obtain a = N/2 and b = N - N/2 = N/2.

Let's look at this problem in another way. We first define the two numbers A and G such that A = (a+b)/2 and G=, and then prove that G achieves its maximum when a and b are equal. If a and b are different, A - G = (a+b)/2 - = ( - )2 / 2 > 0; if they are equal, A = G. Therefore, the maximum value G can take is A and the value is achieved when a=b.

In the case of n positive numbers a1, a2, ..., an with n being no smaller than 2 such that the sum of the numbers is equal to N, we define A=(a1+a2 + ... + an) / n and G = with respect to a1, a2, ..., an. The proof can be done by changing the numbers in such a way that A remains constant but G gets larger until all the numbers are equal, at which point A and G are equal.

Suppose that in the set { a1, a2, ..., an }, a1 is bigger than any other number in the set and a2 is smaller than any other number in the set so that we have a1 > A > a2. Now replace a1 by A and a2 by a2' where a2' = a1+a2-A which is > 0. The new set of numbers becomes {A, a2', a3, ..., an}. Notice that because A+a2' = a1+a2, the sum of the numbers in the new set is equal to that in the old set. Also, the value of A with respect to the numbers in the new set, (A+ a2' + ... + an) / n, is equal to the value of A with respect to the numbers in the old set. By some algebraic manipulation, we have that Aa2' - a1a2 = A(a1+a2-A) - a1a2 = (A-a2)(a1-A) > 0. So the product of the numbers in the new set is greater than that in the old set. This means that by the construction of the new set the value of G has increased.

Based on the above arguments, we can generate sets in sequence such that the numbers in the set generated at each stage will eventually all equal A, and A and G computed with respect to the numbers in the set will become equal. From this we can show that the product of the elements in a partition of N achieves its maximum when the elements are all equal.

ÇØ¼®Á» ÇØÁ¶


¹Ù¸¥»ýȰ NZEO
±ÛÀº ÀÎÅͳݿ¡¼­ ÀÚ½ÅÀ» ³ªÅ¸³»´Â À¯ÀÏÇÑ ¸ð½ÀÀÔ´Ï´Ù.
»ó´ë¿¡°Ô »óó¸¦ Áֱ⺸´Ù °°ÀÌ Áñ°Å¿ö ÇÒ ¼ö ÀÖ´Â ÄÚ¸àÆ® ºÎʵå·Á¿ä.
2025-07-03
13:06:28


Áؼ®¾Æ
ÀÌ·¯Áö¸¶.. 2007-05-15
09:00:07



¼öÀ¯
Áؼ®ÀÌ µðÁ³¾î 2007-05-15
18:54:59



Say~!!
À̰йÌÀûÀ̳Ä?? ¤»¤» ¹ÌÀûÀ» ÇØ¼®ÇØ´Þ¶ó´Â -_-; ¤»¤» ¸ÓÂÇ ¤»¤» 2007-05-15
20:24:21



Name
Password
Comment
¡å

  ¼öÁ¤ÇÏ±â   ÃßõÇÏ±â   ¸ñ·Ïº¸±â

¹øÈ£ Á¦¸ñ ÀÛ¼ºÀÚ ÀÛ¼ºÀÏ   Ãßõ Á¶È¸
4972  '¿À´Ã'ÀÇ ¸¶Áö¸· Áú¹®  [2]  ¾ÞÄÝ 2006/06/07 27 314
4971    [re] Á¤¼ö´Â ȸŽÀ» ÁÁ¾ÆÇØ    ±èÁ¤¼ö 2006/06/11 27 278
4970    [re] Á¤¼ö´Â ȸŽÀ» ÁÁ¾ÆÇØ3  [7]  ±èÁ¤¼ö 2006/06/11 27 423
4969  ¹Þ¾î.    °£Áö³² 2006/06/16 27 311
4968    [re] ¸ÞÃÊ´Ô À̰͵µÂͤ»    ±èÇýÃÊ 2006/06/18 27 414
4967    [re] ¾îÇãÇãÇã    ±èÇýÃÊ 2006/06/18 27 337
4966    [re] ȸ޽ÃÀÛ  [3]  ³²±Ã¸í¼÷ 2006/08/16 27 298
4965  ¾Æ¶ß°Å¿Í    ¿¤ºñ½º 2006/08/16 27 302
4964  ¶ÇÇѹø  [1]  ³ª¾Ï±¸¿õ 2006/08/26 27 379
4963  À̼ø°£À»±â´Ù·È´Ù    È¸Å½Å×·¯Àü¹®¿ä¿ø 2007/04/11 27 310
4962  À̼ø°£À»±â´Ù·È´Ù    È¸Å½Å×·¯Àü¹®¿ä¿ø 2007/04/11 27 300
4961  ÇغÁ  [1]  ¹«Çѹݺ¹ 2007/04/26 27 301
4960    [re] »óȲ±Ø  [4]  ÀÌÁؼ® 2007/04/29 27 341
4959      [re] ļļļ  [1]  12121212 2007/05/05 27 312
4958    [re] ÀÎÆòÇѹø °¡ÀÚ  [3]  °ûÇý¹Ì 2007/05/06 27 416
4957    [re] Çѹø´õ    20st´Ô 2007/05/11 27 321
4956    [re] ÇØº¸½ÃÁö  [9]  ±è»óÅ­ 2007/05/14 27 449
4955    [re] °¡º»°Å¾ß  [3]  ÃÖÁ¾¿ì 2007/05/24 27 360
4954  ¤»¤»¤»´çÀåÇØ  [4]  »ç¶ûÇØ¿äȸŽ 2008/03/27 27 382
4953  »©¸ÔÁö¸»°íÇØ    asdf 2008/04/03 27 292
4952    [re] ³ÊÀÇ ÀÚ¶ûÁ» µé¾îº¸ÀÚ  [2]  À¯Ã¤¿ø 2008/04/12 27 355
4951    [re] ½ÃÇè±â°£ÀÌÁö¸¸ ½ÃÀÛÇÑ´Ù  [6]  21th À̽ÂÇö 2008/04/17 27 364
4950    [re] ´Ù Àо°Å¾ß.  [3]  À±Áö¿¹ 2008/04/27 27 385
4949  À̰ŠÁøÁöÇÏ°Ô ´äº¯ÇغÁ!  [4]  °ÇÈ£Á¹±Í´Ô 2008/05/02 27 386
4948    [re] ÈñÁÖ°¡ ȸŽÇϴ°Š¸ÂÁö?  [3]  ¼­ÈñÁÖ 2008/05/10 27 379
4947    [re] ¹ÞÀ¸¼¼¿ë¢½  [6]  ¼­ÈñÁÖ 2008/05/11 27 429
4946    [re] Çϼ¼¿ä  [6]  ÀÌÁøÈ£ 2008/05/30 27 381
4945  ¿ä°Ô ºüÁ®ºÎ·µ³ß ÇìÇò    È¸Å½Á×¼ø 2008/06/08 27 338
4944    [re] ¾î¼­햌  [2]  ³ëȫä 2008/07/20 27 353
4943  ´ÙÀ½Å¸ÀÚ´Â  [1]  ´ÙÀ½Å¸ÀÚ 2008/08/04 27 306
4942    [re] ȸŽºÎȰ±â³ä  [1]  ±è¿µ¼± 2008/09/19 27 350
4941    [re] ¼û´Ï~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  [3]  ¼û´Ï 2009/04/29 27 340
4940    [re] °³±³±â³äÀÏÀε¥ ¤Ð¤Ð¤Ð¤Ð¤Ð¤Ð¤Ð¤Ð  [4]  ¼û´Ï 2009/04/29 27 370
4939  ¾î·Á¿îÁú¹®¤»    ¾ö¸¶°¡ÁÁ¾Æ¾Æºü°¡ÁÁ¾Æ 2009/05/10 27 323
4938    [re] °æ¼¼¾ß ´Ù½Ã °í°í    ¤· 2009/06/01 27 347
4937  ¤»¤»¹®±â¾ä    È¸Å½Àº? 2009/07/26 27 305
4936    [re] ¿µµà¾ä  [4]  È«¿µÁÖ 2010/04/15 27 471
4935    [re] ¸Þ·Õ¸Þ·Õ  [5]  ³²Çظ° 2010/05/12 27 355
4934    [re] ¤»¤»¤»¤»¤»¤»¤»¤»¤»¤»¿¬ÁØ¾Æ ¼±¹°  [14]  Á¶¿¬ÁØ 2011/04/18 27 446
4933    [re] ÀÚ¿ì´×ȸŽ2  [3]  ±èÀÚ¿î 2011/05/28 27 341
4932    [re] Çϳª·Ð ¾Æ½±Áö? ½Å¼±ÇѳðÀ¸·Î Çϳª ã¾Æ¿Ó¾î  [8]  ÃÖÀ¯³» 2012/04/22 27 314
4931  ¸¹ÀÌ ¸¹ÀÌ ´ÊÀº ÀÎÆòÀÌ ¿Ô¾î¿ë~~~¤Ð¤Ð´Ê¾î¼­ Á˼ÛÇÕ´Ï´ç~~~¤Ð¤Ð  [7]  ±èÇö¼ö 2012/06/16 27 392
4930  ±Ã±×¸Å¿© ? ±Ã±×¸¶¸é ¿À¹é¿ø  [10]  ¹Ú¼ø¸ð 2013/04/02 27 375
4929  Çü¤»    ¹Ú¼ø¸ð 2014/04/12 27 245
4928    [re] È£ÀÕ  [2]  ÃÖÁØÇõ 2014/04/12 27 304
4927    [re] ½Ö²ó    ·ù»ó±Ô 2014/05/01 27 243
4926  ¹ú½á ½ÃÀÛÀ̾ß?¤»¤»¤»    564444498 2014/05/05 27 212
4925  ¤³¤©¤³¤©    564444498 2014/05/06 27 221
4924  ½Å½ÂÈÆ¾¾    ÃÖÁÖºó 2014/05/06 27 241
4923  Ä®´äÁ»¿©    ÀÌ¼Ö 2015/04/04 27 223

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö   [ÀÌÀü 15°³] [1]..[16][17][18][19][20][21][22][23][24][25] 26 [27][28][29][30]..[125]   [´ÙÀ½ 15°³]
       

Copyright 1999-2025 Zeroboard / skin by zero